已知集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0}.M={x|x2-2x-3≤0},全集I=R.
(1)若a<b且CIB=M,求实数a,b的值;
(2)若a>b>-1,求A∩B.
网友回答
解:(1)A={x|(x-1)(x+a)>0},M={x|-1≤x≤3},
∵a<b,∴B={x|x>b或x<a},
∵I=R,
∴CIB={x|a≤x≤b},
∵CIB=M,
∴{x|a≤x≤b}={x|-1≤x≤3},
解得a=-1,b=3.
(2)∵a>b>-1,
∴-a<-b<1
故A={x|x<-a或x>1},
B={x|x<-a或x>-b?},
因此A∩B={x|x<-a或x>1}.
解析分析:(1)解关于x的一元二次不等式得到A={x|(x-1)(x+a)>0},M={x|-1≤x≤3}.再由a<b,得B={x|x>b或x<a},由I=R,知CIB={x|a≤x≤b},利用CIB=M,能求出a和b的值.
(2)由于a>b>-1,得出-a<-b<1,有:A={x|x<-a或x>1},B={x|x<-a或x>-b?}最后求出A,B的交集即可.
点评:本小题主要考查元素与集合关系的判断、交集及其运算、集合关系中的参数取值问题等基础知识,考查运算求解能力与化归与转化思想.属于基础题.