二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是A.a<0,b<0,c>0,b2-4ac>0B.a>0,b<0,c>0,b2-4ac<0C.a<0,b>0,c<0,b2-4ac>0D.a<0,b>0,c>0,b2-4ac>0
网友回答
D
解析分析:由抛物线的开口方向判断a与0的关系,再结合抛物线的对称轴与y轴的关系判断b与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点的个数判断b2-4ac与0的关系.
解答:∵抛物线的开口向下,∴a<0,∵对称轴在y轴右边,∴a,b异号即b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∵抛物线与x轴有2个交点,∴b2-4ac>0.故选D.
点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.