已知非零向量e1,e2,a,b满足a=2e1-e2,b=ke1+e2.(1)若e1与e2不共线,a与b是共线,求实数k的值;(2)是否存在实数k,使得a与b不共线,e

发布时间:2020-07-31 13:11:34

已知非零向量e1,e2,a,b满足a=2e1-e2,b=ke1+e2.
(1)若e1与e2不共线,a与b是共线,求实数k的值;
(2)是否存在实数k,使得a与b不共线,e1与e2是共线?若存在,求出k的值,否则说明理由.

网友回答

解:(1)由=λ,得2=λk+λ,而与不共线,
∴;
(2)若与是共线,则=λ,有
∵,,为非零向量,∴λ≠2且λ≠-k,
∴,即,这时a与b共线,
∴不存在实数k满足题意.
解析分析:(1)利用向量共线的充要条件列出方程据平面向量的基本定理求出k.(2)利用向量共线设出等式,将,用不共线的基底表示,得到矛盾.

点评:本题考查向量共线的充要条件、平面向量的基本定理.
以上问题属网友观点,不代表本站立场,仅供参考!