如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是A.B.C.D.
网友回答
A
解析分析:根据题意,连接AP,AN,因为点A是正方形的对角线的交点,则有AP=AN,∠APF=∠ANE=45°,再由∠PAF+∠FAN=∠FAN+∠NAE=90°,可得∠PAF=∠NAE,进而可得△PAF≌△NAE,可得四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,根据正方形的面积为a2,可得四边形AENF的面积,即