已知△ABC为等腰三角形,由A点作BC边的高恰好等于BC边长的一半,则∠BAC的度数为A.75°B.90°C.75°或90°D.15°或75°或90°

发布时间:2020-07-30 13:22:31

已知△ABC为等腰三角形,由A点作BC边的高恰好等于BC边长的一半,则∠BAC的度数为A.75°B.90°C.75°或90°D.15°或75°或90°

网友回答

D
解析分析:本题要分情况讨论,根据等腰三角形的性质来分析:①当AD在三角形的内部,②AD在三角形的外部以,③BC边为等腰三角形的底边三种情况.

解答:解:如下图,分三种情况:①AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C==75°,∴∠BAC=∠C=75°;②AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=15°;③AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故选D.

点评:本题考查了等腰三角形的性质,及三角形内角和定理、三角形的外角的性质;本题要分三种情况讨论:前两种情况为∠BAC为等腰三角形的底角,且AD在三角形内部还是外部;第三种为∠BAC为等腰三角形的顶角;这是正确解答本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!