如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程”必有实数根;
(3)若x=-1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积.
网友回答
(1)解:当a=3,b=4,c=5时
勾系一元二次方程为3x2+5x+4=0;
(2)证明:根据题意,得
△=(c)2-4ab=2c2-4ab
∵a2+b2=c2
∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0
即△≥0
∴勾系一元二次方程必有实数根;
(3)解:当x=-1时,有a-c+b=0,即a+b=c
∵2a+2b+c=6,即2(a+b)+c=6
∴3c=6
∴c=2
∴a2+b2=c2=4,a+b=2
∵(a+b)2=a2+b2+2ab
∴ab=2
∴S△ABC=ab=1.
解析分析:(1)直接找一组勾股数代入方程即可;
(2)通过判断根的判别式△的正负来证明结论;
(3)利用根的意义和勾股定理作为相等关系先求得c的值,根据完全平方公式求得ab的值,从而可求得面积.
点评:此类题目要读懂题意,根据题目中所给的材料结合勾股定理和根的判别式解题.