直线l的解析式y=+8,与x轴、y轴分别交于A、B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒个单位沿x轴向左运动,同时⊙P的半径以每秒个单位变小,设⊙P的运动时间是t秒,且⊙P始终与直线l有交点,试求t的取值范围;
(3)在(2)中,设⊙P被直线l截得的弦长为a,问是否存在t的值,使a最大?若存在,求出t的值.
网友回答
解:(1)如图,由于直线l:y=+8与x轴、y轴分别交于A、B两点,所以A、B两点的坐标可以求出,线段OA、OB的长度也可以求出,又OB⊥AP,AB切⊙P于B点,可以得到△ABO∽△BPO,然后根据相似三角形的对应边成比例就可以求出OP,BP,也就求出了题目的结论;
求得P点坐标(6,0),半径PB=10.
(2)若⊙P以每秒个单位沿x轴向左运动,同时⊙P的半径以每秒个单位变小,
设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围;
R≥点P到直线L的距离,则⊙P始终与直线l有交点.
P[(6-t),0],R=10-t,L:3x-4y+32=0
点P到直线L的距离H=|10-2t|
10-t≥|10-2t|
10-t≥10-2t≥-(10-t)
解得:0≤t≤;
(3)在(2)中,设⊙P被直线l截得的弦长为a,问是否存在t的值,使a最大?若存在,求出t的值
一定存在t的值,使a最大
()2=R2-H2=(10-t)2-(10-2t)2=(-)?(t-)2+50
则a2=-7t2+40t,
t==时,a2最大=,a最大=.
解析分析:(1)直线l的解析式y=+8,与x轴、y轴分别交于A、B两点,求出A(-,0),B(0,8),由圆P与直线l相切的直线PB的解析式y=+8,求得P点坐标(6,0),PB=10,
(2)由R≥点P到直线L的距离,则⊙P始终与直线l有交点,求得t的取值范围.
(3)先假设存在这样的t,然后由条件求出t值.
点评:此题把一次函数与圆相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.