如图,⊙O与矩形ABCD的边CD切于E,交BC于F,M为上一点,若,AD=7,则tan∠M的值为A.B.C.D.
网友回答
A
解析分析:连接EO,且延长交AB于Z,连接AF,求出CE=DE,求出AB,根据切割线定理求出CF,求出BF,解直角三角形求出即可.
解答:
连接EO,且延长交AB于Z,连接AF,
则∠AMB=∠AFB,
∵⊙O切CD于E,
∴OE⊥CD,
∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,AD=BC=7
∴OE⊥AB,
∴由垂径定理得:BZ=AZ,
即CE=DE=,
∴AB=CD=2,
∵CE是⊙O的切线,CFB是⊙O割线,
∴CE2=CF?CB,
∵CE=,BC=7,
∴CF=1,
∴BF=7-1=6,
在Rt△ABF中,tan∠M=tan∠AFB===,
故选A.
点评:本题考查了切割线定理,矩形性质,切线性质,解直角三角形,垂径定理的应用,关键是求出AB和BF的值.