求定积分x²cos2xdx上限为π下限为0

发布时间:2021-03-15 05:18:12

求定积分x²cos2xdx上限为π下限为0

网友回答

∫x²cos2xdx
=1/2·∫x²dsin2x
=1/2·x²sin2x-1/2·∫sin2xdx²
=1/2·x²sin2x-∫xsin2xdx
=1/2·x²sin2x+1/2∫xdcos2x
=1/2·x²sin2x+1/2xcos2x-1/2∫cos2xdx
=1/2·x²sin2x+1/2xcos2x-1/4∫dsin2x
=1/2·x²sin2x+1/2xcos2x-1/2sin2x
所以求定积分x²cos2xdx上限为π下限为0
=(1/2·x²sin2x+1/2xcos2x-1/2cos2x) |(0到π)
=-π您好,土豆实力团为您答疑解难.
如果本题有什么不明白可以追问,如果满意记得采纳.
答题不易,请谅解,谢谢.
另祝您学习进步!
======以下答案可供参考======
供参考答案1:
∫x²cos2xdx
=1/2∫x²cos2xd2x
=1/2∫x²dsin2x
=1/2x²sin2x-1/2∫sin2xdx²
=1/2x²sin2x+1/2∫xdcos2x
=1/2x²sin2x+1/2xcos2x-1/2∫cos2xdx
=1/2x²sin2x+1/2xcos2x-1/4sin2x (0,π
=-π供参考答案2:
求原函数啊,分布积分
以上问题属网友观点,不代表本站立场,仅供参考!