将一副直角三角板(含45°角的直角三角板ABC与含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于A.1:B.1:2C.1

发布时间:2020-07-29 23:20:58

将一副直角三角板(含45°角的直角三角板ABC与含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于A.1:B.1:2C.1:D.1:3

网友回答

D

解析分析:结合图形可推出△AOB∽△COD,只要求出AB与CD的比就可知道它们的面积比,我们可以设BC为a,则AB=a,根据直角三角函数,可知DC=a,即可得△AOB与△COD的面积之比.

解答:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD=a∴S△AOB:S△COD=1:3故选:D.

点评:本题主要考查相似三角形的判定及性质、直角三角形的性质等,本题关键在于找到相关的相似三角形
以上问题属网友观点,不代表本站立场,仅供参考!