已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,若实数a满足f(a)≤f(2),则a的取值范围是______;a2-2a+2的最大值是______.

发布时间:2020-08-10 02:07:55

已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,若实数a满足f(a)≤f(2),则a的取值范围是______;a2-2a+2的最大值是______.

网友回答

解:由题 意,由函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,可得出函数在(0,+∞)上是增函数,由此得函数∵f(a)≤f(2),
∴-2≤a≤2
又a2-2a+2=(a-1)2+1,故其最大值为(-2-1)2+1=10,
以上问题属网友观点,不代表本站立场,仅供参考!