如图,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(4)若DB=6,求BM.

发布时间:2020-08-07 15:06:05

如图,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(4)若DB=6,求BM.

网友回答

(1)证明:∵E是AB的中点,
∴AB=2EB,
∵AB=2CD,
∴CD=EB,
又∵AB∥CD,
∴四边形CBED是平行四边形,
∴CB∥DE,
∴∠DEM=∠BFM,∠EDM=∠FBM,
∴△EDM∽△FBM;

(2)解:∵△EDM∽△FBM,
∴,
∵F是BC的中点,
∴DE=BC=2BF,
∴DM=2BM,
∴DB=DM+BM=3BM,
∵DB=6,
∴BM=DB=×6=2.
解析分析:(1)根据题意及中点的性质得出四边形CBED是平行四边形,根据平行的性质得出∠DEM=∠BFM,∠EDM=∠FBM,从而得出△EDM∽△FBM;
(2)根据(1)中三角形相似的比例关系即可推理得出
以上问题属网友观点,不代表本站立场,仅供参考!