如图,将矩形ABCD对折,得折痕PQ,再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点.连接AC′,BC′,则图中共有等腰三角形的个数是
A.1B.2C.3D.4
网友回答
C
解析分析:根据翻折,平行及轴对称的知识找到所有等腰三角形的个数即可.
解答:∵C′在折痕PQ上,∴AC′=BC′,∴△AC′B是等腰三角形;∵M是BC的中点,∴BM=MC,∴△BMC′是等腰三角形;由翻折可得∠CMF=∠C′MF,∵PQ∥BC,∴∠PFM=∠CMF,∴∠C′MF=∠PFM,∴C′M=C′F,∴△C′MF是等腰三角形,共有3个等腰三角形,故选C.
点评:考查由翻折问题得到的等腰三角形的判定;综合运用所学知识得到等腰三角形的个数是解决本题的关键.