如何证明在三角形中sinA+sinB+sinC=4coc(A/2)*cos(B/2)*cos(C/2

发布时间:2021-03-16 08:09:32

如何证明在三角形中sinA+sinB+sinC=4coc(A/2)*cos(B/2)*cos(C/2)

网友回答

证明:∵在三角形ABC中,
∴A+B+C=180度,得SINA=SIN(B+C)
则A/2=90度-(B+C)/2,得COSA/2=SIN((B+C)/2)
左边=Sin(B+C)+SinB+SinC
则4Cos(A/2)Cos(B/2)Cos(C/2)
=4Sin((B+C)/2)Cos(B/2)Cos(C/2)
=4Cos(B/2)Cos(C/2)(SinB/2·CosC/2+CosB/2·SiNC/2)
=4Sin(B/2)Cos(B/2)(Cos(C/2))^2+4Sin(C/2)Cos(C/2)(Cos(B/2))^2
=SinB(CosC+1)+SinC(CosB+1)
=Sin(B+C)+SinB+SinC
左边=右边 原式成立!
以上问题属网友观点,不代表本站立场,仅供参考!