设f(x)=|x|+2|x-a|(a>0).
(1)当a=1时,解不等式f(x)≤8.
(2)若f(x)≥6恒成立,求实数a的取值范围.
网友回答
解:(1)当a=1时,f(x)=|x|+2|x-1|=
当x<0时,由2-3x≤8得,-2≤x<0
当0≤x≤1时,由2-x≤8得,0≤x≤1
当x>1时,由3x-2≤8得,1<x≤
综上所述不等式f(x)≤8的解集为[-2,]
(2)∵f(x)=|x|+2|x-a|=
则f(x)在(-∞,a)上单调递减,在(a,+∞)上单调递增,
∴当x=a时,f(x)取最小值a
若f(x)≥6恒成立,则a≥6
∴实数a的取值范围为[6,+∞).
解析分析:(1)将a=1代入,利用零点分段法,可将函数的解析式化成分段函数的形式,进而分类讨论各段上f(x)≤8的解,最后综合讨论结果,可得不等式f(x)≤8的解集.
(2)利用零点分段法,可将函数的解析式化成分段函数的形式,结合一次函数的单调性可分析出函数的f(x)的单调性,进而求出函数f(x)的最小值,得到实数a的取值范围.
点评:本题考查的知识点是分段函数的应用,绝对值不等式,其中利用零点分段法,将函数的解析式化成分段函数的形式,进而分类讨论是解答此类问题的通法.