已知二次函数y=ax2+bx+c的图象经过A(2,3)、B(0,3)、C(4,-5)三点.
(1)求该抛物线的解析式;
(2)当x为何值时,y>3;
(3)试确定△ABC的外接圆圆心M的坐标.
网友回答
解:(1)∵y=ax2+bx+c的图象经过A(2,3)、B(0,3)、C(4,-5)三点,
∴,
解得,
∴抛物线的解析式为:y=-x2+2x+3;
(2)∵A(2,3),B(0,3),
∴当0<x<2时,y>3;
(3)分别作AB于BC的中垂线,交点为M,点M即为圆心;
连接MB、MC,设M(1,yM),
∵MB2=1+(3-yM)2,MC2=(yM+5)2+9,
∴1+(3-yM)2=(yM+5)2+9,
∴yM=-,
∴△ABC的外接圆的圆心的坐标为M(1,-).
解析分析:(1)将A、B、C三点的坐标代入抛物线的解析式中,即可求出待定系数的值;
(2)易知A(2,3),B(0,3),由图知,当抛物线上的点在B、A之间时,纵坐标都大于3,由此可得当0<x<2时,y>3;
(3)作△ABC任意两边的中垂线,两条垂直平分线的交点即为所求的M点;由于AB的垂直平分线是抛物线的对称轴方程,那么点M必在抛物线的对称轴上,可据此设出点M的坐标;然后根据平面直角坐标系中两点间的距离公式求出MB、MC的长,由于三角形的外心到三个顶点的距离相等,那么MB=MC,由此可列出关于M点纵坐标的方程,从而求出M点的坐标.
点评:此题主要考查的是二次函数解析式的确定以及三角形外心坐标的求法.