在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为个单位长度.如图,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
(1)求k的值;
(2)若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标.
网友回答
解:(1)根据题意得:B的坐标为(0,b),∴OA=OB=b,∴A的坐标为
(b,0),代入y=kx+b得k=-1.
(2)过P作x轴的垂线,垂足为F,连接OD,OP,
∵PC、PD是⊙O的两条切线,∠CPD=90°,
∴∠OPD=∠OPC=∠CPD=45°,
∵∠PDO=90°,∠POD=∠OPD=45°,
∴在Rt△POD中,OD=PD=,
利用勾股定理得出:OP=.
∵P在直线y=-x+4上,设P(m,-m+4),则OF=m,PF=-m+4,
∵∠PFO=90°,OF2+PF2=PO2,
∴m2+(-m+4)2=()2,
解得m=1或3,
∴P的坐标为(1,3)或(3,1)
答:①k的值为-1;②P的坐标为(1,3)或(3,1).
解析分析:认真读题,①由题意可得B的坐标,又由OA=OB可得到点A的坐标,把坐标代入解析式消去b,可求得k的值;②要求p点的坐标,可先设出坐标,找关系列出方程可求解,要列方程必须先求出OP的大小,于是借助等腰直角三角形进行解答,