如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.

发布时间:2020-08-09 06:02:33

如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.
(1)求证:△ABC∽△ADE;
(2)判断△ABD与△ACE是否相似?并证明.

网友回答

证明:(1)∵∠BAD=∠CAE,
∴∠BAC=∠DAE,
∵∠ABC=∠ADE,
∴△ABC∽△ADE.

(2)△ABD∽△ACE.
证明:由(1)知△ABC∽△ADE,
∴,
∴AB×AE=AC×AD,
∴,
∵∠BAD=∠CAE,
∴△ABD∽△ACE.
解析分析:(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;
(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.

点评:本题主要考查了相似三角形的判定及性质问题,应熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!