如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.

发布时间:2020-08-06 21:21:13

如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.
(1)当α=35°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.

网友回答

解:(1)连接OB,则OA=OB;
∵∠OAB=35°,
∴∠OBA=∠OAB=35°,
∵∠AOB=180°-∠OAB-∠OBA,
∴∠AOB=180°-35°-35°=110°,
∴β=∠C=∠AOB=55°.

(2)α与β之间的关系是α+β=90°;
证明:∵∠OBA=∠OAB=α,
∴∠AOB=180°-2α,
∵β=∠C=∠AOB,
∴β=(180°-2α)=90°-α,
∴α+β=90°.
解析分析:(1)连接OB,根据三角形外心的性质可知:OA=OB;则在等腰△AOB中∠OBA=∠OAB;则再根据三角形内角和定理可以求得∠AOB的度数;最后根据圆周角定理可以求得β的度数;
(2)由(1)可猜想α与β之间的关系是α+β=90°;同(1)一样∠OBA=∠OAB=α,则∠AOB=180°-2α,β=∠C=∠AOB,所以可求β=(180°-2α)=90°-α,则α+β=90度.

点评:本题考查了三角形的外接圆的性质以及圆周角定理.要熟练掌握这些性质定理才能灵活运用.
以上问题属网友观点,不代表本站立场,仅供参考!