如图,在平行四边形ABCD中,BE⊥AC于点E,DF⊥AC于点F.
求证:AE=CF.
(说明:写出证明过程中的重要依据)
网友回答
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD(平行四边形对边平行且相等),
∴∠BAE=∠DCF(两直线平行内错角相等),
∵AE⊥AC于E,DF⊥AC于F,
∴∠AEB=∠CFD=90°(垂直定义),
∴∠ABE=∠CDF(等角的余角相等),
∴△ABE≌△CDF(ASA),
∴AE=CF(全等三角形的对应边相等).
解析分析:可以把要证明相等的线段AE、CF分别放到两个三角形中,即△ABE和△CDF中,寻找它们全等的条件(ASA),得出对应边相等AE=CF.
点评:此题主要考查平行四边形的性质及三角形全等的判定等知识.