如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为A.1个B.2个C.3个D.4
网友回答
C
解析分析:(1)△ABM和△CDM是全等的等边三角形,那么可知这两个三角形的内角都等于60°,所有的边都相等,即知∠AMB=∠CMD=60°,又MA⊥MD,故∠AMD=90°,利用周角概念可求∠BMC,而BM=CM,结合三角形内角和等于180°,可求∠MBC、∠MCB;(2)由于MA⊥MB,则∠AMD=90°,而MA=MD,那么∠MDA=45°,又∠MDC=60°,可求∠ADC=105°,由(1)中可知∠MBC=15°,则∠ABC=60°+15°=75°,所以∠ADC+∠ABC=180°;(3)延长BM交CD于N,∠NMC是△BMC的外角,可求∠NMC=30°,即知MN是△CDM的角平分线,根据等腰三角形三线合一性质可知MB垂直平分CD;(4)利用(2)中的方法可求∠BAD=105°,∠BCD=75°,易证∠BAD+∠ABC=180°,则AD∥BC,又∵AB=DC,可证四边形ABCD是等腰梯形,从而可知四边形ABCD是轴对称图形.
解答:(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°-60°-60°-90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故(2)(3)(4)正确.故选C.
点评:本题利用了等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定、梯形的判定、等腰三角形三线合一定理、轴对称的判定.