已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=______,a=______,m=______;
(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.
网友回答
解:(1)由图②知:从第4到第5秒时,S的值恒为12,此时矩形全部落在正方形的内部,
那么矩形的面积为12,即可求得DE=4;
这个过程持续了1秒,说明正方形的边长为:DE+1=5;
由于矩形的速度恒定,所以5~m也应该用4秒的时间,故m=5+4=9;
即:b=4,a=5,m=9.
(2)如图,当0≤t≤5时,
∵AD′=5-t,D′G=3,PF′=4-t,CP=2,
∴y=9+(5-t)2+4+(4-t)2,
∴y=2(t-)2+,
∴当t=时,y有最小值,y最小值=.
(3)①当0≤t<4时,分别延长AG′和F′C;
如图,由于∠1和∠2都是锐角,所以∠1+∠2<180°,
所以AG′与CF′不可能平行.
设AG′与F′C的延长线交于点H,
当∠G′AD′=∠PCF′时,直线AG′⊥CF′;
∴△AD′G′∽△CPF′,
∴,
∴=,
解得t1=2,t2=7(不合题意,舍去).
②当t=4时,由于点F′在CD上,而点G′不在直线AD上,
因为AD⊥CD,所以AG′不可能也垂直于CD
(因为过直线外一点有且只有一条直线与已知直线垂直).
同样,由于AB∥CD,而点G′不在直线AB上,
所以t=4时,AG′也不可能平行于CD(CF′)
(因为过直线外一点,有且只有一条直线与已知直线平行).
③4<t<5时,延长G′F′交PC于P,延长AG′交CD于Q,
由于∠CF′P是锐角,所以∠CF′G是钝角,
所以∠CF′G+∠QGF′≠90°,所以AG′与CF′不可能垂直;
当∠G′AD′=∠CF′P时,AG′∥CF′,
易得△AD′G′∽△F′PC,
∴,
∴=,
解得t=4.4.
④当t=5时,AG′与CF′既不可能垂直也不可能平行,理由同②.
⑤当5<t<9时,因为∠QG′F′与∠CF′G′都是钝角,
所以∠QG′F′+∠CF′G′>180°,
所以AG′与CF′不可能平行.
延长CF′与AG′相交于点M,延长G′F′与CD相交于点P;
当∠MG′F′+∠MF′G′=90°时,AG′⊥CF′;
又∵∠AG′D′+∠AG′F′=90°,∠MF′G′=∠CF′P,
∴∠AG′D′=∠CF′P,又∠AD′G′=∠F′PC,
∴△AD′G′∽△CPF′,
∴,即;
解得:t1=2(不合题意,舍去),t2=7;
所以,综上所述,当t=2或t=7时,直线AG′与直线CF′垂直,当t=4.4时,直线AG′与直线CF′平行.
解析分析:(1)由图②的函数图象知:从第4-5秒,S的值恒为12,即此时矩形全部落在正方形的内部,由此可求得两个条件:①矩形的面积为12,②正方形的边长为1+DE,根据这两个条件求解即可.
(2)当0≤t≤5时,矩形在直线AB的左侧,可用t表示出AD′、PF′的长,易求得D′G、CP的长,即可用勾股定理求得AG′2、CF′2的值,即可得到y、t的函数关系式.
(3)此题要分五种情况讨论:
①当0≤t<4时,点E′在D点右侧;由于∠HG′F′、∠HF′G′都是锐角,显然直线AG′与CF′不可能平行;当两条直线垂直时,△G′HF′是直角三角形,易证得△AD′G′∽△CPF′,根据相似三角形得到的比例线段即可求得t的值;
②当t=4时,D、E′重合,此时直线DC与E′F′重合,显然此时AG′与CF′既不平行也不垂直,因为过直线外一点,有且只有一条直线与已知直线平行或垂直;
③当4<t<5时,矩形在正方形的内部,延长G′F′交BC于P,延长AG′交CD于Q,此时∠CF′P是锐角,所以∠CF′G是钝角,显然AG′与CF′不可能垂直;当两直线平行时,可证得△AD′G′∽△F′PC,进而可根据相似三角形得到的比例线段求得t的值;
④当t=5时,此种情况与②相同;
⑤当5<t<9时,此时∠QG′F′与∠CF′G′都是钝角,显然AG′与CF′不可能平行;当两直线垂直时,可延长CF′与AG′相交于点M,延长G′F′与CD相交于点P,通过证△AD′G′∽△CPF′来求得此时t的值.
点评:此题主要考查了矩形、正方形的性质,勾股定理,相似三角形的判定和性质以及分段函数的应用等知识,同时还考查了分类讨论的数学思想,难度较大.