方程x2+mx-1=0有一个根在0和2之间,则m的取值范围是________.
网友回答
解析分析:先令y=x2+mx-1,则当x=0时,y=-1,故函数y=x2+mx-1开口向上与x轴有两个不同的交点,由于方程x2+mx-1=0有一个根在0和2之间,故当x=2时,函数y=x2+mx-1的值大于0,由此可求出m的取值范围.
解答:令y=x2+mx-1,
∵当x=0时,y=-1,
∴函数y=x2+mx-1开口向上与x轴有两个不同的交点,
∵方程x2+mx-1=0有一个根在0和2之间,
∴当x=2时,函数y=x2+mx-1的值大于0,即y=4+2m-1>0,解得m>-.
故