如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF的长为A.3B.4C

发布时间:2020-07-30 12:29:22

如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF的长为A.3B.4C.5D.6

网友回答

C
解析分析:根据垂径定理知:E为AP中点,F为PB中点,即EF为△APB中位线;然后利用三角形中位线定理(EF=AB)求解.

解答:∵点P是⊙O上的动点(P与A,B不重合),OE⊥AP于E,OF⊥PB于F,∴根据垂径定理知,∴AE=EP、BF=PF,即E为AP中点,F为PB中点,∴EF为△APB中位线;又AB=10,∴EF=AB=×10=5(三角形中位线定理);故选C.

点评:本题主要考查了垂径定理、三角形的中位线定理.此题是一道动点问题.解答此类问题的关键是找到题目中的不变量.
以上问题属网友观点,不代表本站立场,仅供参考!