如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积

发布时间:2020-08-07 13:36:27

如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了________秒(结果保留根号).

网友回答

(4+2)
解析分析:根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD的高BE,再根据t=2时△PAD的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度计算即可得解.

解答:解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,
∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒,
∵动点P的运动速度是1cm/s,
∴AB=2cm,BC=2cm,
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,
则四边形BCFE是矩形,
∴BE=CF,BC=EF=2cm,
∵∠A=60°,
∴BE=ABsin60°=2×=,
AE=ABcos60°=2×=1,
∴×AD×BE=3,
即×AD×=3,
解得AD=6cm,
∴DF=AD-AE-EF=6-1-2=3,
在Rt△CDF中,CD===2,
所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,
∵动点P的运动速度是1cm/s,
∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).
以上问题属网友观点,不代表本站立场,仅供参考!