如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是A.B.C.D.
网友回答
B
解析分析:首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C′,求得直线C′D的解析式,与x轴的交点的横坐标即是m的值.
解答:∵点A(-1,0)在抛物线y=x2+bx-2上,∴×(-1)2+b×(-1)-2=0,∴b=-,∴抛物线的解析式为y=x2-x-2,∴顶点D的坐标为(,-),作出点C关于x轴的对称点C′,则C′(0,2),OC′=2连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.?设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴=,即=,∴m=.故选B.
点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.