如图,在等腰梯形ABCD中,AB∥DC,AB=10cm,CD=4cm,点P从点A出发,以1.5cm/秒的速度沿AB向终点B运动;点Q从点C出发,以1cm/秒的速度沿C

发布时间:2020-07-29 13:08:03

如图,在等腰梯形ABCD中,AB∥DC,AB=10cm,CD=4cm,点P从点A出发,以1.5cm/秒的速度沿AB向终点B运动;点Q从点C出发,以1cm/秒的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒:
(1)当点Q运动到点D时,PQ把梯形分成两个特殊图形是________、________;
(2)过点D作DE⊥AB,垂足为E,当四边形DEPQ是矩形时,求t的值;
(3)探索:是否存在这样的t值,使四边形PBCQ的面积是四边形APQD面积的2倍?若存在,求出t的值;若不存在,请说明理由.

网友回答

解:(1)平行四边形、等腰三角形,
理由是:∵当Q到D时,t=4÷1=4,
则AP=1.5×4=6,
∴BP=AB-AP=10-6=4,
∴BP=CD,
∵DC∥AB,
∴四边形CDPB是平行四边形,
∴DP=BC=AD,
∴△DPA是等腰三角形,
以上问题属网友观点,不代表本站立场,仅供参考!