如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,
(1)△ABC与△DBC的面积相等吗?为什么?
(2)若S△AOB=21cm2,求S△COD;
(3)若S△AOD=10cm2,且BO:OD=2:1,求S△ABD.
网友回答
解:(1))△ABC与△DBC的面积相等,理由是:
∵AD∥BC,
∴△ABC的边BC上的高和△DBC边BC上的高相等,设此高为h,
∴△ABC的面积是BC×h,△DBC的面积是×BC×h,
∵BC=BC,
∴△ABC与△DBC的面积相等;
(2)∵S△ABC=S△DBC,
∴S△ABC-S△OBC=S△DBC-S△OBC,
∴S△AOB=S△DOC=21cm2,
即S△COD=21cm2;
(3)∵BO:OD=2:1,
∴BD=3OD,
∵△AOD的边OD上的高和△ABD的边BD上的高相等,设此高为a,
∵S△AOD=×OD×a=10cm2,
∴S△ABD.=×BD×a=×3OD×a=3×10cm2=30cm2.
解析分析:(1)根据已知得出∴△ABC的边BC上的高和△DBC边BC上的高相等,设此高为h,根据三角形的面积公式求出即可;(2)根据△ABC的面积和△DBC的面积相等,都减去△OBC的面积,即可得出△AOB的面积和△DOC的面积相等;(3)求出BD=3OD,根据面积公式代入求出即可.
点评:本题考查了平行线间的距离和三角形的面积,注意:等高的三角形的面积之比等于对应的边之比.