在V上定义线性变换T为T(x)=x-2(x,a)a,其中a是欧式空间V的一个单位向量设a是n维欧式空

发布时间:2021-03-08 22:12:07

在V上定义线性变换T为T(x)=x-2(x,a)a,其中a是欧式空间V的一个单位向量设a是n维欧式空间V的一个单位向量,在V上定义线性变换T为T(x)=x-2(x,a)a,求:(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出一组正交基,使得T在该组基下的矩阵是对角矩阵

网友回答

这个变换称为沿着a的反射.reflection along a
(1)证明变换相等一般的方法就是证明所有元素的像相同
T^2(x)=T(x-2(x,a)a)=x-2(x,a)a-2(x-2(x,a)a,a)a=x-2(x,a)a-2(x,a)a+2(2(x,a)a,a)a=x
(2)可证得
T(ka)=-ka
若(a,b)=0,则T(b)=b
故取a,扩充为R^n的一个规范正交基,即满足题设.
以上问题属网友观点,不代表本站立场,仅供参考!