如图,在Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.(1)求证:MN=AC;(2)如果把条件“AM=AN”改为“AM⊥AN”,其它条件不变,

发布时间:2020-08-05 07:04:09

如图,在Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
(1)求证:MN=AC;
(2)如果把条件“AM=AN”改为“AM⊥AN”,其它条件不变,那么MN=AC不一定成立.如果再改变一个条件,就能使MN=AC成立.请你写出改变的条件并说明理由.

网友回答

证明:(1)【方法一】如图,连接CM.
在Rt△ABC中,∠C=90°,M是AB的中点,
∴CM=AM.
∴∠MAC=∠MCA.
∵AM=AN,
∴∠AMN=∠ANM.
∵MN∥AC,
∴∠CAM=∠AMN.
∴∠ACM=∠ANM.
∴∠CMA=∠MAN.
∴AN∥CM.
∴四边形ACMN是平行四边形.
∴MN=AC.
【方法二】如图,连接CM,
证△ACM≌△MNA.
∴MN=AC.
(2)把“M是AB的中点”改为“过C点作AB的垂线,垂足为M点”.
理由是:易知CM∥AN,又MN∥AC,有四边形ACMN是平行四边形.
(注:改“Rt△ABC”为“等腰Rt△ABC”,酌情给分)
解析分析:(1)要证MN=AC,只需证四边形ACMN为?,根据定义两组对边分别平行的四边形时平行四边形,而MN∥AC为已知,需证AN∥MC,可利用内错角相等,两直线平行来求.
(2)∵AM⊥AN,且MN∥AC,∴四边形ACMN要为?,还少一组平行,若把M看做时RT△ABC斜边高的垂足,则可证明CM∥AN,即可利用平行四边形的定义证明.

点评:此题主要考查了平行四边形的定义以及判定,难易程度适中.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
以上问题属网友观点,不代表本站立场,仅供参考!