已知:如图,在?ABCD中,AC是对角线,BE平分∠ABC,交AC于点E,DF平分∠ADC,交AC于点F.求证:△ABE≌△CDF.
网友回答
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠ABC=∠CDA,
∵BE平分∠ABC,DF平分∠ADC,
∴,,
∴∠ABE=∠CDF,
∵AB∥CD,
∴∠BAE=∠DCF
在△ABE和△CDF中,,
∴△ABE≌△CDF(ASA).
解析分析:先根据平行四边形的性质得出∠ABC=∠CDA,然后利用角平分线的知识证明∠BAE=∠DCF,从而根据三角形全等的判定定理即可作出证明.
点评:本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两三角形全等所需要的条件,然后根据三角形全等的判定定理进行证明.