有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,且该塔形几何体的全面积(含最底层正方体的底面面积)超过639,则该塔形中正方体的个数至少是________个.
网友回答
10
解析分析:设有n个正方体此正方体塔能看到表面及侧面和正方体裸露在外的上表面,根据题意知这n个正方体构成首相为8公比为的等比序列.故这n个正方体的侧面又构成首相为64公比为的等比序列.
解答:设有n个正方体此正方体塔能看到表面及侧面和正方体裸露在外的上表面,则n个正方体侧面面积之和Sn==16×(1+),又知正方体裸露在上面的面积为64和最底层的面积64,故裸露在外面的表面积Sn'=64×(1+)+64+64=64+26-n+64+64=198+26-n,由题意知Sn'>639.解之得n>10.
故