已知函数f(x)的导函数的图象如图所示,若△ABC为锐角三角形,则一定成立的是A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)<f(cosB)
网友回答
A
解析分析:根据导数的图象,得到函数f(x)在区间(0,+∞)上是增函数.再由正弦函数的单调性和锐角三角形的性质,得到sinA>cosB,所以f(sinA)>f(cosB),得到正确选项.
解答:根据导数的图象,可知当x>0时,f'(x)>0;当x<0时,f'(x)<0∴f(x)在区间(0,+∞)上是增函数,在区间(-∞,0)上是减函数∵△ABC为锐角三角形,∴A、B都是锐角,且A+B>由此可得0<-B<A<,因为正弦函数在锐角范围是增函数,所以对上式的两边取正弦得sin(-B)<sinA∴sinA>cosB,再结合f(x)在区间(0,+∞)上是增函数,得f(sinA)>f(cosB)故选A
点评:本题以导数的符号判断函数的单调性,并在锐角三角形比较两个函数值的大小,着重考查了导数的性质和锐角三角形的性质等知识,属于基础题.