对于钝角α,定义它的三角函数值如下:
sinα=sin(180°-α),cosα=-cos(180°-α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.
网友回答
解:(1)由题意得,
sin120°=sin(180°-120°)=sin60°=,
cos120°=-cos(180°-120°)=-cos60°=-,
sin150°=sin(180°-150°)=sin30°=;
(2)∵三角形的三个内角的比是1:1:4,
∴三个内角分别为30°,30°,120°,
①当∠A=30°,∠B=120°时,方程的两根为,-,
将代入方程得:4×()2-m×-1=0,
解得:m=0,
经检验-是方程4x2-1=0的根,
∴m=0符合题意;
②当∠A=120°,∠B=30°时,两根为,,不符合题意;
③当∠A=30°,∠B=30°时,两根为,,
将代入方程得:4×()2-m×-1=0,
解得:m=0,
经检验不是方程4x2-1=0的根.
综上所述:m=0,∠A=30°,∠B=120°.
解析分析:(1)按照题目所给的信息求解即可;
(2)分三种情况进行分析:①当∠A=30°,∠B=120°时;②当∠A=120°,∠B=30°时;③当∠A=30°,∠B=30°时,根据题意分别求出m的值即可.
点评:本题考查了特殊角的三角函数值,解答本题的关键是按照题目所给的运算法则求出三角函数的值和运用分类讨论的思想解题,难度一般.