已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.
(1)求∠E的度数;
(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).
①如图2,弦AB与弦CD交于点F;
②如图3,弦AB与弦CD不相交;
③如图4,点B与点C重合.
网友回答
解:(1)如图1,连接OC、OD.
∵AD⊥BD,
∴AB是直径.
∴OC=OD=CD=1.
∴∠COD=60°,
∴∠DBE=30°,
∴∠E=60°.
(2)①如图2,连接OD、OC,AC.
∵DO=CO=CD=1,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠DAC=30°,
∴∠EBD=30°,
∵∠ADB=90°,
∴∠E=90°-30°=60°,
②如图3,连接OD、OC.同理可得出∠CBD=30°,∠BED=90°-30°=60°.
③如图4,当点B与点C重合时,则直线BE与⊙0只有一个公共点.
∴EB恰为⊙O的切线.∠E=60°.
解析分析:(1)根据AD⊥BD得到AB是直径,连接OC、OD,发现等边三角形,再根据圆周角定理求得
∠EBD=30°,再进一步求得∠E的度数;
(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得.
点评:此题主要是能够根据圆周角定理的推论发现AB是直径,进一步发现等边三角形COD.从而根据圆周角定理以及圆内接四边形的性质求解.