如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB于点D,交AC于点E,求证:AE=2CE.

发布时间:2020-08-06 09:05:35

如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AB于点D,交AC于点E,求证:AE=2CE.

网友回答

解:连接BE,
∵在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=90°-∠A=60°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE.
解析分析:首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.

点评:此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!