如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B________∠1,∠C________∠2;若∠BAC=126°,则∠EAG=________度.
网友回答
= = 72
解析分析:先根据线段垂直平分线的性质得出AE=BE,AG=CG,故∠1=∠B,∠2=∠C,由三角形内角和定理可知,∠B+∠C+∠BAC=∠B+∠C+126°=180°,故∠B+∠C=54°,由于∠1+∠2+∠B+∠C+∠EAG=180°,即2(∠B+∠C)+∠EAG=180°,再把∠B+∠C=54°代入即可求解.
解答:∵DE、FG分别是边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴∠1=∠B,∠2=∠C,∵∠B+∠C+∠BAC=∠B+∠C+126°=180°,∴∠B+∠C=54°,∵∠1+∠2+∠B+∠C+∠EAG=180°,即2(∠B+∠C)+∠EAG=180°,故∠EAG=180°-2×54°=72°.故