如图,△ABC顶角是36°的等腰三角形(底与腰的比为的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=________.

发布时间:2020-08-10 21:50:29

如图,△ABC顶角是36°的等腰三角形(底与腰的比为的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=________.

网友回答

6-2
解析分析:△ABC顶角是36°的等腰三角形,则两底角为72°,这样的三角形称为黄金三角形,又△BDC、△DEC都是黄金三角形,可证BC=BD=AD,DE=DC,利用DE=DC=AC-AD=AB-BC求解.

解答:根据题意可知,BC=AB,
∵△ABC顶角是36°的等腰三角形,
∴AB=AC,∠ABC=∠C=72°,
又∵△BDC也是黄金三角形,
∴∠CBD=36°,BC=BD,
∴∠ABD=∠ABC-∠CBD=36°=∠A,
∴BD=AD,同理可证DE=DC,
∴DE=DC=AC-AD=AB-BC=AB-AB=6-2.
以上问题属网友观点,不代表本站立场,仅供参考!