如图,半径分别为r1,r2的⊙O1、⊙O2相外切,AB为两圆的外公切线,O1O2为连心线,若∠AO1O2=60°,r1=6,则r2等于A.3B.2C.1.5D.1
网友回答
B
解析分析:两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
解答:解:过点O2作O2C⊥O1A,∵∠AO1O2=60°,r1=6,∴6+r1=2(6-r1),即r1=2.故选B.
点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.