已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.
网友回答
证明:∵四边形ABCD是正方形,M为CD中点,
∴CM=MD=AD.
∵BP=3PC,
∴PC=BC=AD=CM.
∴.
∵∠PCM=∠ADM=90°,
∴△MCP∽△ADM.
解析分析:欲证△ADM∽△MCP,通过观察发现两个三角形已经具备一组角对应相等,即∠D=∠C,此时,再求夹此对应角的两边对应成比例即可.
点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.