如图,坐标平面上有两直线L、M,其方程式分别为y=9、y=-6.若L上有一点P,M上有一点Q,PQ与y轴平行,且PQ上有一点R,PR:RQ=1:2,则R点与x轴的距离

发布时间:2020-07-30 07:22:40

如图,坐标平面上有两直线L、M,其方程式分别为y=9、y=-6.若L上有一点P,M上有一点Q,PQ与y轴平行,且PQ上有一点R,PR:RQ=1:2,则R点与x轴的距离为何A.1B.4C.5D.10

网友回答

B
解析分析:由已知直线L上所有点的纵坐标为9,M上所由点的坐标为-6,由PQ与y轴平行即于x轴垂直,可得出PN=9,QN=6,PQ=PN+QN=9+6=15,根据已知PR:PQ=1:2可求出PR,从而求出R点与x轴的距离.

解答:解:已知直线L和M的方程式是y=9、y=-6,所以得到直线L、M都平行于x轴,即得点P、Q到x轴的距离分别是9和6,又PQ平行于y轴,所以PQ垂直于x轴,所以,PN=9,QN=6,PQ=PN+QN=9+6=15,又PR:RQ=1:2,所以得:PR=5,PQ=10,则,RN=PN-PR=9-5=4,所以R点与x轴的距离为4.故选:B.

点评:此题考查的知识点是坐标与图形性质,解题的关键是由已知直线L、M,及PQ与y轴平行先求出PQ,再由PR:PQ=1:2求出R点与x轴的距离.
以上问题属网友观点,不代表本站立场,仅供参考!