已知关于x的一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,且原方程有两个相等的实数根,则下列结论正确的是A.a=cB.a=bC.b=cD.a=b=c

发布时间:2020-07-30 14:13:17

已知关于x的一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,且原方程有两个相等的实数根,则下列结论正确的是A.a=cB.a=bC.b=cD.a=b=c

网友回答

A

解析分析:因为方程有两个相等的实数根,所以根的判别式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化简即可得到a与c的关系.

解答:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化简得(a-c)2=0,所以a=c.故选A.

点评:此题主要考查了一元二次方程根的情况与判别式△的关系,关键是熟练掌握:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
以上问题属网友观点,不代表本站立场,仅供参考!