已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,

发布时间:2020-08-12 13:40:11

已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是A.①②③B.仅有①②C.仅有①③D.仅有②③

网友回答

A
解析分析:①根据对称轴方程求得a、b的数量关系;
②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;
③利用两点间直线最短来求△PAB周长的最小值.

解答:解:①根据图象知,对称轴是直线x=-=1,则b=-2a,即2a+b=0.
故①正确;
②根据图象知,点A的坐标是(-1,0),对称轴是x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故②正确;
③如图所示,点A关于x=1对称的点是A′,即抛物线与x轴的另一个交点.
连接BA′与直线x=1的交点即为点P,
则△PAB周长的最小值是(BA′+AB)的长度.
∵B(0,3),A′(3,0),
∴BA′=3.即△PAB周长的最小值是3+.
故③正确.
综上所述,正确的结论是:①②③.
故选A.

点评:本题考查了二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.
以上问题属网友观点,不代表本站立场,仅供参考!