已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:(1)如图1,若∠BAD=60°,∠EAD=15°,则∠C=______度,(2)

发布时间:2020-08-10 15:01:42

已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:
(1)如图1,若∠BAD=60°,∠EAD=15°,则∠C=______度,
(2)如图2,若∠BAD=62°,∠EAD=22°,则∠C=______度,
(3)通过以上的计算你发现∠EAD和∠C-∠B之间的关系应为:∠C-∠B=______∠EAD;
(4)在图3的△ABC中,∠C>∠B,那么(3)中的结论仍然成立吗?为什么?

网友回答

解:(1)∵∠BAD=60°,∠EAD=15°,
∴∠BAE=∠BAD-∠EAD=45°,
∵AE平分∠BAC,
∴∠BAC=2∠BAE=90°.
∵AD⊥BC,∠BAD=60°,
∴∠B=30°,
∴∠C=90°-30°=60°;

(2)∵∠BAD=62°,∠EAD=22°,
∴∠BAE=∠BAD-∠EAD=40°,
∵AE平分∠BAC,
∴∠BAC=2∠BAE=80°.
∵AD⊥BC,∠BAD=62°,
∴∠B=28°,
∴∠C=180°-∠BAC-∠B°=72°;

(3)∵(1)中∠EAD=15°,∠C-∠B=60°-30°=30°,发现∠C-∠B=2∠EAD,
?????? (2)中∠EAD=22°,∠C-∠B=72°-28°=44°,发现∠C-∠B=2∠EAD,
???? 故推测∠C-∠B=2∠EAD;

(4)在图3的△ABC中,∠C>∠B,那么(3)中的结论仍然成立.理由如下:
∵在△ABC中,AD⊥BC,AE平分∠BAC,
∴∠ADC=∠ADB=90°,∠BAE=∠CAE,
∴∠C-∠B=90°-∠CAD-(90°-∠BAD)=∠BAD-∠CAD,
又∵∠BAD=∠BAE+∠EAD,∠CAD=∠CAE-∠EAD,
∴∠C-∠B=2∠EAD.
解析分析:(1)先求出∠BAE=∠BAD-∠EAD=45°,再根据角平分线的定义,得出∠BAC=90°,则根据三角形内角和定理得出∠C=90°-∠B,故求出∠B的度数即可.而在直角△ABD中,∠B=90°-∠BAD=30°;
(2)同(1),先求出∠BAE=∠BAD-∠EAD=40°,再根据角平分线的定义,得出∠BAC=80°,则三角形内角和定理得出∠C=100°-∠B,故求出∠B的度数即可.而在直角△ABD中,∠B=90°-∠BAD=28°;
(3)由(1)(2)的计算发现∠EAD和∠C-∠B之间的关系应为:∠C-∠B=2∠EAD;
(4)先根据三角形内角和定理及垂直的定义,得出∠C-∠B=∠BAD-∠CAD,再由角平分线的定义得出结论∠C-∠B=2∠EAD.

点评:本题主要考查了三角形内角和定理,角平分线、垂直的定义及角的和差,属于基础题型,难度中等.
以上问题属网友观点,不代表本站立场,仅供参考!