边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=与y=-的图象均与正方形ABCD的边相交,则图中的阴影部分的面积之和是________.
网友回答
8
解析分析:先根据两反比例函数的解析式确定出两函数图象之间的关系,再根据正方形ABCD的对称中心是坐标原点O可知图中四个小正方形全等,反比例函数的图象与两坐标轴所围成的图形全等,故阴影部分的面积即为两个小正方形即大正方形面积的一半.
解答:由两函数的解析可知:两函数的图象关于x轴对称.
∵正方形ABCD的对称中心是坐标原点O,
∴四个小正方形全等,每个小正方形的面积=S□ABCD=×4×4=4,
∴反比例函数的图象与两坐标轴所围成的图形全等,
∴阴影部分的面积=S□ABCD=×4×4=8.
故