当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是A.-1B.0C.1D.2

发布时间:2020-07-29 15:46:08

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是A.-1B.0C.1D.2

网友回答

C

解析分析:本题应对代数式进行化简,得出含有x-y的式子,再将x-y=1代入即可.

解答:x4-xy3-x3y-3x2y+3xy2+y4=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(x-y)[(x-y)(x2+xy+y2)-3xy]把x-y=1代入得,原式=1×[1×(x2+xy+y2)-3xy]=x2-2xy+y2=(x-y)2∵x-y=1,∴原式=1.故选C.

点评:本题考查了因式分解的应用;解题的关键是整体代换的思想.
以上问题属网友观点,不代表本站立场,仅供参考!