如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C.若CE=2,求图中阴影部分的周长.
网友回答
解:连接OD,OE、AD,
∵AB是⊙O的直径,点D、E是半圆的三等分点,
∴BE⊥AC,==,
∴∠AOE=∠EOD=∠DOB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC是等边三角形,
∴AB=BC=AC=2CE=4,圆的半径为2,
在Rt△ABE中,BE=,
∵AB为直径,
∴∠ADB=90°,
∴AD⊥BC,BD=,
∵的度数为60°,
∴∠DOE=60°,
∴的长=,
∴图中阴影部分的周长=.
解析分析:连接OD、OE、AD,可得△ABC是等边三角形,由此可求出圆的半径长,再利用勾股定理得出BE的长,以及可求出BD和的长即可.
点评:本题考查了扇形弧长公式的运用,求出△ABC是等边三角形是解题关键.