在半径为1的⊙O中,弦AB长,弦AC的长为,则∠BAC的度数为________.
网友回答
75°或15°
解析分析:连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可.
解答:解:有两种情况:
①如图所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂径定理得:AE=BE=,AF=CF=,
cos∠OAE==,cos∠OAF==,
∴∠OAE=30°,∠OAF=45°,
∴∠BAC=30°+45°=75°;
②如图所示:
连接OA,过O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂径定理得:AE=BE=,AF=CF=,
cos∠OAE==,cos∠OAF==,
∴∠OAE=30°,∠OAF=45°,
∴∠BAC=45°-30°=15°,
故