如图,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,则线段BD、CE、DE之间存在的数量关系是________.

发布时间:2020-08-07 18:05:30

如图,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,则线段BD、CE、DE之间存在的数量关系是________.

网友回答

DE=BD+CE
解析分析:线段BD、CE、DE之间存在的数量关系为DE=BD+CE,理由为:由BF、CF分别为角平分线,利用角平分线定义得到两对角相等,再由DE与BC平行,得到两对内错角相等,等量代换及等角对等边得到BD=DF,EC=FE,由DE=DF+FE,等量代换可得证.

解答:线段BD、CE、DE之间存在的数量关系为DE=BD+CE,理由为:
∵BF为∠ABC的平分线,CF为∠ACB的平分线,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∴∠DBF=∠DFB,∠EFC=∠ECF,
∴BD=FD,EC=EF,
则DE=DF+FE=BD+CE.
以上问题属网友观点,不代表本站立场,仅供参考!