已知f(x)=x-lnx,g(x)=,其中x∈(0,e](e是自然常数).(Ⅰ)求f(x)的单调性和极小值;(Ⅱ)求证:g(x)在(0,e]上单调递增;(Ⅲ)求证:f

发布时间:2020-07-31 09:26:05

已知f(x)=x-lnx,g(x)=,其中x∈(0,e](e是自然常数).
(Ⅰ)求f(x)的单调性和极小值;
(Ⅱ)求证:g(x)在(0,e]上单调递增;
(Ⅲ)求证:f(x)>g(x)+.

网友回答

(Ⅰ)解:∵f(x)=x-lnx,∴f′(x)=(x>0),
∴当0<x<1时,f′(x)<0,此时f(x)单调递减;当1<x<e时,f′(x)>0,此时f(x)单调递增
∴f(x)的极小值为f(1)=1------(4分)
(Ⅱ)证明:求导数可得
∴当0<x<e时,g'(x)>0,∴g(x)在(0,e]上单调递增------(3分)
(Ⅲ)证明:∵f(x)的极小值为1,即f(x)在(0,e]上的最小值为1,∴f(x)>0,f(x)min=1
∴------(3分)
∴f(x)>g(x)+.
解析分析:(Ⅰ)求导函数,利用导数的正负,可确定函数的单调性,从而可求f(x)的极小值;(Ⅱ)求导数,利用0<x<e时,g'(x)>0,可得结论;(Ⅲ)证明即可.

点评:本题考查导数知识的运用,考查函数的单调性与极值,考查不等式的证明,确定函数的最值是关键.
以上问题属网友观点,不代表本站立场,仅供参考!